師資
研究領(lǐng)域:
概率極限理論、斯坦因方法,、統(tǒng)計物理、函數(shù)型數(shù)據(jù)分析,、非參數(shù)統(tǒng)計、隨機圖理論
教育背景:
2013.08-2017.07 香港中文大學(xué),,統(tǒng)計學(xué)系,,博士
2009.09-2013.06 武漢大學(xué),數(shù)學(xué)與統(tǒng)計學(xué)院,學(xué)士
工作經(jīng)歷:
2024年至今,,南方科技大學(xué)副教授
2022—2023,,南方科技大學(xué)助理教授
2021—2022 加州大學(xué)圣地亞哥分校SEW客座助理教授
2019—2021 新加坡國立大學(xué)博后研究員
2017—2019 墨爾本大學(xué)博后研究員
Publications:
[1] Q.-M. Shao and Z.-S. Zhang. (2016). “Identifying the limiting distribution by a general approach of Stein’s method”, Sci. China Math., vol. 59, 2379–2392.
[2] Q.-M. Shao and Z.-S. Zhang. (2019). “Berry–Esseen bounds of normal and non-normal approximation for unbounded exchangeable pairs”, Ann. Probab., vol. 47, 61–108.
[3] Q.-M. Shao, M.-C. Zhang and Z.-S. Zhang. (2021), “Cramér-type moderate deviations for non-normal approximation”. Ann. Appl. Probab. Vol. 31, 247–283.
[4] Q.-M. Shao and Z.-S. Zhang (2022), “Berry–Esseen bounds for multivariate nonlinear statistics with applications to M-estimators and stochastic gradient descent algorithms”. Bernoulli 28 (3), 1548-1576.
[5] Z.-S. Zhang (2022), “Berry–Esseen bounds for generalized U -statistics”. Electron. J. Probab 27, 1–36.
[6] Z.-S. Zhang, “Cramér-type moderate deviations of normal approximation for exchangeable pairs”. Available at arXiv: 1901.09526. To appear in Bernoulli.
[7] A. Roellin and Z.-S. Zhang, “Dense multigraphon-valued stochastic processes and edge-changing dynamics in the configuration model”. To appear in Annals of Applied Probability.