91精品 国产区|麻豆视频传媒短视频网|免费吃瓜在线观看|吃瓜一区播放|91制片厂进入脸秀|国产成人精品网东北老女人|麻豆传媒映画两岸三地|白浆h网站|五一爆料网官网|五月网站,91制片厂安然,吃瓜国产黑料在线,麻豆文化传媒官网入口i

師資

EN       返回上一級       師資搜索
張卓松
副教授
88011674

研究領(lǐng)域:

概率極限理論、斯坦因方法,、統(tǒng)計物理、函數(shù)型數(shù)據(jù)分析,、非參數(shù)統(tǒng)計、隨機圖理論


教育背景:

2013.08-2017.07  香港中文大學(xué),,統(tǒng)計學(xué)系,,博士

2009.09-2013.06  武漢大學(xué),數(shù)學(xué)與統(tǒng)計學(xué)院,學(xué)士


工作經(jīng)歷:

2024年至今,,南方科技大學(xué)副教授

2022—2023,,南方科技大學(xué)助理教授

2021—2022  加州大學(xué)圣地亞哥分校SEW客座助理教授

2019—2021  新加坡國立大學(xué)博后研究員

2017—2019  墨爾本大學(xué)博后研究員


Publications:

[1] Q.-M. Shao and Z.-S. Zhang. (2016). “Identifying the limiting distribution by a general approach of Stein’s method”, Sci. China Math., vol. 59, 2379–2392.

[2] Q.-M. Shao and Z.-S. Zhang. (2019). “Berry–Esseen bounds of normal and non-normal approximation for unbounded exchangeable pairs”, Ann. Probab., vol. 47, 61–108.

[3] Q.-M. Shao, M.-C. Zhang and Z.-S. Zhang. (2021), “Cramér-type moderate deviations for non-normal approximation”. Ann. Appl. Probab. Vol. 31, 247–283.

[4] Q.-M. Shao and Z.-S. Zhang (2022), “Berry–Esseen bounds for multivariate nonlinear statistics with applications to M-estimators and stochastic gradient descent algorithms”. Bernoulli 28 (3), 1548-1576.

[5] Z.-S. Zhang (2022), “Berry–Esseen bounds for generalized U -statistics”. Electron. J. Probab 27, 1–36.

[6] Z.-S. Zhang, “Cramér-type moderate deviations of normal approximation for exchangeable pairs”. Available at arXiv: 1901.09526. To appear in Bernoulli.

[7] A. Roellin and Z.-S. Zhang, “Dense multigraphon-valued stochastic processes and edge-changing dynamics in the configuration model”. To appear in Annals of Applied Probability.