91精品 国产区|麻豆视频传媒短视频网|免费吃瓜在线观看|吃瓜一区播放|91制片厂进入脸秀|国产成人精品网东北老女人|麻豆传媒映画两岸三地|白浆h网站|五一爆料网官网|五月网站,91制片厂安然,吃瓜国产黑料在线,麻豆文化传媒官网入口i

師資

EN       返回上一級(jí)       師資搜索
張振國
副教授
0755-88018700

副教授。2008年6月畢業(yè)于武漢大學(xué),,獲地球物理學(xué)學(xué)士學(xué)位,,2014年11月畢業(yè)于中國科學(xué)技術(shù)大學(xué),獲固體地球物理學(xué)博士學(xué)位,,2014年12月至2016年12月在中國科學(xué)技術(shù)大學(xué)從事博士后研究,,2016年12月加入南方科技大學(xué)。主要從事地震學(xué)研究,,包括:震源動(dòng)力學(xué),,地震災(zāi)害,地震高性能計(jì)算,,復(fù)雜介質(zhì)中地震波傳播等領(lǐng)域,,主持、參與多項(xiàng)國家自然科學(xué)基金,、科技部等項(xiàng)目,;并在GRL、GJI,、BSSA等期刊發(fā)表論文60余篇,。2017年獲得高性能計(jì)算應(yīng)用領(lǐng)域最高獎(jiǎng)“戈登·貝爾”獎(jiǎng)(ACM Gordon Bell Prize),2018年獲中國地球物理學(xué)會(huì)傅承義青年科技獎(jiǎng),,2019年獲國家優(yōu)秀青年科學(xué)基金,。


教育背景

2008.09-2014.11,固體地球物理博士,,中國科學(xué)技術(shù)大學(xué)

2004.09-2008.06,,地球物理學(xué)士,武漢大學(xué)


工作經(jīng)歷

2020.05-至今,,副教授,,南方科技大學(xué),地球與空間科學(xué)系

2016.12-2020.04,,助理教授,,南方科技大學(xué),地球與空間科學(xué)系

2014.12-2016.12,,博士后研究員,,中國科學(xué)技術(shù)大學(xué),,地球和空間科學(xué)學(xué)院


榮譽(yù)獎(jiǎng)項(xiàng)

2021年,第九屆清華大學(xué)-浪潮集團(tuán)計(jì)算地球科學(xué)青年人才獎(jiǎng)

2018年,,中國地球物理學(xué)會(huì)傅承義青年科技獎(jiǎng)

2017年,,ACM Gordon Bell Prize

2017年,深圳市高層次人才(后備級(jí))

2014年,,中國科學(xué)院院長優(yōu)秀獎(jiǎng)


研究領(lǐng)域

1. 復(fù)雜介質(zhì)中地震波傳播

2. 高性能計(jì)算

3. 復(fù)雜斷層破裂動(dòng)力學(xué)

4. 地震災(zāi)害


論文專著

  1. Shi, Y., Y. Li, and Z. Zhang (2024). Reevaluating Earthquake Fatalities in the Taiwan Region: Toward More Accurate Assessments, Seismol. Res. Lett., https://doi.org/10.1785/0220230353.

  2. Wan, W., L. Gan, W. Wang, Z. Yin, H. Tian, Z. Zhang, Y. Wang, M. Hua, X. Liu, S. Xiang, Z. He, Z. Wang, P. Gao, X. Duan, W. Liu, W. Xue, H. Fu, G. Yang, X. Chen, Z. Song, Y. Chen, X. Liu, and W. Zhang (2023). 69.7-PFlops Extreme Scale Earthquake Simulation with Crossing Multi-faults and Topography on Sunway, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 10, 1-15, https://doi.org/10.1145/3581784.3613209.

  3. Gu, Y., Z. Zhang*, W. Wang, and Z. He (2023). Dynamic rupture modeling and Ground-Motion Simulations of the 2022 Mw 6.6 Luding Earthquake, Seismol. Res. Lett., 94(6), 2575-2585, https://doi.org/10.1785/0220230110.

  4. Wang, Z., W. Zhang, T. Taymaz, Z. He, T. Xu, and Z. Zhang* (2023). Dynamic Rupture Process of the 2023 Mw 7.8 Kahramanmaras Earthquake (SE Türkiye): Variable Rupture Speed and Implications for Seismic Hazard, Geophys. Res. Lett., 50(15), e2023GL104787, https://doi.org/10.1029/2023GL104787.

  5. Yu, H., Z. Zhang, F. Hu, D. Xu, and X. Chen* (2023). Estimation of the Nucleation Location and Rupture Extent of the 1850 Xichang, Sichuan, China, Earthquake by Dynamic Rupture Simulations on a Multi‐Segment Stepover Structure, Earth Space Sci., 10(6), e2022EA002775, https://doi.org/10.1029/2022EA002775.

  6. Xu, D., W. Gong, Z. Zhang, J. Xu, H. Yu, and X. Chen* (2023). The 2016 Menyuan earthquake: the largest self-arrested crustal earthquake ever observed, Geophys. Res. Lett., 50(11), e2023GL103556, https://doi.org/10.1029/2023GL103556.

  7. Li., Y, D. Xin, and Z. Zhang* (2023). Estimating the economic loss caused by earthquake in Mainland China, Int. J. Disaster Risk Reduct., 95, 103708, https://doi.org/10.1016/j.ijdrr.2023.103708.

  8. Wang, W., Z. Zhang*, W. Zhang, and Q. Liu (2023). Implementation of efficient low-storage techniques for 3-D seismic simulation using the curved grid finite-difference method, Geophys. J. Int., 234(3), 2214-2230, https://doi.org/10.1093/gji/ggad198.

  9. Gu, Y., Z. Zhang*, W. Wang, and Z. Wang (2023). Dynamic rupture simulations based on interseismic locking models—taking the Suoerkuli section of the Altyn Tagh Fault as an example, Geophys. J. Int., 234(3), 1737-1751, https://doi.org/10.1093/gji/ggad161.

  10. 王文強(qiáng),,李懿龍,張振國*,,信丹華,,何仲秋,張偉,,陳曉非(2023). 2022年9月5日瀘定M6.8級(jí)地震災(zāi)害損失快速評(píng)估,,中國科學(xué):地球科學(xué),53(6), 1342-1352, https://doi.org/10.1360/SSTe-2022-0290.

  11. Wang, W., Y. Li, Z. Zhang*, D. Xin, Z. He, W. Zhang, and X. Chen (2023). Rapid estimation of disaster losses for the M6.8 Luding earthquake on September 5, 2022, Sci. China Earth Sci., 66(6), 1334-1344, https://doi.org/10.1007/s11430-022-1078-6.

  12. Wang, Z., Y. Li, W. Wang, W. Zhang, and Z. Zhang* (2023). Revisiting paleoearthquakes with numerical modeling: a case study of the 1679 Sanhe-Pinggu earthquake, Seismol. Res. Lett., 94(2A), 720-730, https://doi.org/10.1785/0220220208.

  13. Xu, D., Z. Zhang, Y. Qian, H. Yu, and X. Chen* (2022). Dynamic Modeling of the 2020 Mw 6.0 Jiashi Earthquake: Constrained by Geodetic and Seismic Observations, Seismol. Res. Lett., 93(6), 3278-3290, https://doi.org/10.1785/0220220102.

  14. Li, Y., Z. Zhang*, W. Wang, and X. Feng (2022). Rapid Estimation of Earthquake Fatalities in Mainland China Based on Physical Simulation and Empirical Statistics—A Case Study of the 2021 Yangbi Earthquake. Int. J. Environ. Res. Public Health, 19(11), 6820. https://doi.org/10.3390/ijerph19116820.

  15. Wang, W., Z. Zhang*, W. Zhang, H. Yu, Q. Liu, W. Zhang, and X. Chen (2022). CGFDM3D-EQR: A Platform for Rapid Response to Earthquake Disasters in 3D Complex Media, Seismol. Res. Lett., 93(4), 2320-2334, https://doi.org/10.1785/0220210172.

  16. Song, Z., Z. Zhang*, P.G. Ranjith, W. Zhao, and C. Liu (2022). Experimental study on the influence of hydrostatic stress on the Lode angle effect of porous rock, Int. J. Min. Sci. Technol., 32(4), 727-735, https://doi.org/10.1016/j.ijmst.2022.02.007.

  17. Song, Z., Z. Zhang*, G. Zhang, J. Huang, M. Wu (2022). Identifying the Types of Loading Mode for Rock Fracture via Convolutional Neural Networks, J. Geophys. Res.: Solid Earth, 127(2), e2021JB022532,  https://doi.org/10.1029/2021JB022532.

  18. Yu, H., F. Hu, J. Xu, Z. Zhang* and X. Chen (2022). Dynamic rupture simulation of the 1833 Songming, Yunnan, China, M 8.0 earthquake: Effects from stepover location and overlap distance, Earth Space Sci., 9(2), e2021EA002100, https://doi.org/10.1029/2021EA002100.

  19. Taymaz, T.*, S., Yolsal-?evikbilen, T. S. Irmak, F. Vera, C. Liu, T. Eken, Z. Zhang, C. Erman, and D. Kele? (2022). Kinematics of the 30 October 2020 Mw 7.0 Néon Karlovásion (Samos) earthquake in the Eastern Aegean Sea: Implications on source characteristics and dynamic rupture simulations, Tectonophysics, 826, 229223, https://doi.org/10.1016/j.tecto.2022.229223.

  20. Chen, K., J.-P. Avouac, J. Geng*, K. Liang, Z. Zhang, Z. Li, and S. Zhang (2022). The 2021 Mw 7.4 Madoi earthquake: an archetype bilateral slip-pulse rupture arrested at a splay fault, Geophys. Res. Lett., 49(2), e2021GL095243, https://doi.org/10.1029/2021GL095243.

  21. Zhang, Z.*, and Y. Zhang (2021). Application of a parameter-shifted grey wolf optimizer for earthquake dynamic rupture inversion, Earthq. Sci., 34(6), 507-521, https://doi.org/10.29382/eqs-2021-0049.

  22. Li, Y., D. Xin, and Z. Zhang* (2021). A Rapid-Response Earthquake Fatality Estimation Model for Mainland China, Int. J. Disaster Risk Reduct., 66, 102618, https://doi.org/10.1016/j.ijdrr.2021.102618.

  23. Yuan S., Z. Zhang, H. Ren, W. Zhang, X. Song, and X. Chen* (2021). Finite-difference modeling and characteristics analysis of Love waves in anisotropic-viscoelastic media, Bull. Seismol. Soc. Am., 112(1), 23-47 https://doi.org/10.1785/0120200372.

  24. Xin, D., and Z. Zhang* (2021). On the comparison of seismic ground motion simulated by physics-based dynamic rupture and predicted by empirical attenuation equations. Bull. Seismol. Soc. Am., 111(5), 2595-2616,  https://doi.org/10.1785/0120210077.

  25. Li, Y., Z. Zhang, and D. Xin* (2021). A Composite Catalog of Damaging Earthquakes for Mainland China, Seismol. Res. Lett., 92(6), 3767-3777, https://doi.org/10.1785/0220210090.

  26. Gao, L., W. Zhang, Z. Zhang, and, X. Chen* (2021). Extraction of multimodal dispersion curves from ambient noise with compressed sensing, J. Geophys. Res.: Solid Earth, 126(6), e2020JB021472, https://doi.org/10.1029/2020JB021472.

  27. Xu, J., Z. Zhang, and X. Chen* (2021). The effects of sediments on supershear rupture. Tectonophysics, 805, 228777, https://doi.org/10.1016/j.tecto.2021.228777.

  28. Zhang, Z.*, W. Zhang, D. Xin, K. Chen, and X. Chen (2020). A dynamic-rupture model of the 2019 Mw 7.1 Ridgecrest Earthquake being compatible with the observations, Seismol. Res. Lett., 92(2A), 870-876, https://doi.org/10.1785/0220200258.

  29. Chen, K.*, Z. Zhang, C. Liang, C. Xue., and P. Liu (2020). Kinematics and dynamics of the 24 January 2020 Mw 6.7 Elazig, Turkey earthquake, Earth Space Sci., 7(11), e2020EA001452, https://doi.org/10.1029/2020EA001452.

  30. Xu, J., X. Chen, P. Liu, and Z. Zhang* (2020). Ground motion signatures of supershear ruptures in the Burridge-Andrews and free-surface-induced mechanisms, Tectonophysics, 791, 228570, https://doi.org/10.1016/j.tecto.2020.228570.

  31. Zhang, W., Z. Zhang*, M. Li, and X. Chen (2020). GPU implementation of curved-grid finite-difference modelling for non-planar rupture dynamics, Geophys. J. Int., 222(3), 2121-2135. https://doi.org/10.1093/gji/ggaa290.

  32. Yu, H., W. Zhang, Z. Zhang*, Z. Li, and X. Chen (2020). Investigation on the Dynamic Rupture of the 1970 Ms 7.7 Tonghai, Yunnan, China, Earthquake on the Qujiang Fault, Bull. Seismol. Soc. Am., 110(2), 898-919, https://doi.org/10.1785/0120190185.

  33. Qian, Y.*, X. Chen, H. Luo, S. Wei, T. Wang, Z. Zhang, X. Luo (2019).  An extremely shallow Mw4.1 thrust earthquake in the eastern Sichuan basin probably triggered by the unloading from a small scale infrastructure construction, Geophys. Res. Lett., 46, 13775-13784, https://doi.org/10.1029/2019GL085199.

  34. Zhang, W., Z. Zhang*, H. Fu, Z. Li, X. Chen (2019). Importance of spatial resolution in ground motion simulations with 3D basins: An example using the Tangshan earthquake, Geophys. Res. Lett., 46(21), 11915-11924, doi:10.1029/2019GL084815.

  35. Zhang, Z.*, W. Zhang, and X. Chen (2019). Dynamic rupture simulations of the 2008 Mw 7.9 Wenchuan earthquake by the curved grid finite-difference method, J. Geophys. Res.: Solid Earth, 124(10), 10565-10582, doi:10.1029/2019JB018630.

  36. Xu, X., Z. Zhang*, F. Hu, and X. Chen (2019). Dynamic rupture simulations of the 1920 Ms 8.5 Haiyuan earthquake in China, Bull. Seismol. Soc. Am., 109(5), 2009-2020, doi: 10.1785/0120190061.

  37. Fu, H.*, B. Chen, W. Zhang, Z. Zhang, W. Zhang, G. Yang, and X. Chen (2019). Extreme-scale earthquake simulations on Sunway TaihuLight, CCF Trans. HPC, 1(1), 14-24, doi:10.1007/s42514-019-00004-w.

  38. Liu, P.*, X. Chen, Z. Li, Z. Zhang, J. Xu, W. Feng, C. Wang, Z. Hu, W. Tu, and H. Li (2018). Resolving Surface Displacements in Shenzhen of China from Time Series InSAR, Remote Sensing, 10(7), 1162. 

  39. Harris, R.A.*, M. Barall, B. Aagaard, S. Ma, D. Roten, K. Olsen, B. Duan, D. Liu, B. Luo, K. Bai, J.-P. Ampuero, Y. Kaneko, A.-A. Gabriel, K. Duru, T. Ulrich, S. Wollherr, Z. Shi, E. Dunham, S. Bydlon, Z. Zhang, X.Chen, S.N. Somala, C. Pelties, J. Tago, V.M. Cruz-Atienza, J. Kozdon, E. Daub, K. Aslam, Y. Kase, K. Withers, and L. Dalguer (2018). A Suite of Exercises for Verifying Dynamic Earthquake Rupture Codes, Seismol. Res. Lett., 89(3), 1146-1162, doi:10.1785/0220170222.

  40. Chen, B., H. Fu, Y. Wei, C. He, W. Zhang, Y. Li, W. Wan, W. Zhang, Z. Zhang, G. Yang, X. Chen (2018). Simulating the Wenchuan Earthquake with Accurate Surface Topography on Sunway TaihuLight. In Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis (pp. 40:1–40:12). Piscataway, NJ, USA: IEEE Press.

  41. Huang, H., Z. Zhang*, and X. Chen (2018). Investigation of topographical effects on rupture dynamics and resultant ground motions, Geophys. J. Int., 212(1), 311-323, doi:10.1093/gji/ggx425.

  42. Fu, H., C. He, B. Chen, Z. Yin, Z. Zhang, W. Zhang, T. Zhang, W. Xue, W. Liu, W. Yin, G. Yang, and X. Chen (2017). 18.9-Pflopss Nonlinear Earthquake Simulation on Sunway TaihuLight: Enabling Depiction of 18-Hz and 8-meter Scenarios. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (p. 2:1–2:12). New York, NY, USA: ACM, doi:10.1145/3126908.3126910.

  43. Zhang, Z., J. Xu, H. Huang, and X. Chen* (2017). Seismic characteristics of supershear and sub-Rayleigh earthquakes: implication from simple cases, Geophys. Res. Lett., 44, 6712–6717, doi:10.1002/2017GL074158.

  44. Zhang, Z., W. Zhang*, X. Chen, P. Li, and C. Fu (2017). Rupture dynamics and ground motion from potential earthquakes around Taiyuan, China, Bull. Seismol. Soc. Am., 107(3), 1201–1212, doi:10.1785/0120160239.

  45. Hu, F., J. Xu, Z. Zhang, and X. Chen* (2016). Supershear transition mechanism induced by step over geometry, J. Geophys. Res.: Solid Earth, 121(12), 8738-8749, doi:10.1002/2016JB013333.

  46. Weng, H., H. Yang*, Z. Zhang, and X. Chen (2016). Earthquake rupture extents and coseismic slips promoted by damaged fault zones, J. Geophys. Res.: Solid Earth, 121(6), 4446–4457.

  47. Xu, J., Z. Zhang*, and X. Chen (2016). The effects of barriers on supershear rupture, Geophys. Res. Lett., 43(14), 7478–7485.

  48. Hu, F., Z. Zhang, and X. Chen* (2016). Investigation of earthquake jump distance for strike-slip step overs based on 3-D dynamic rupture simulations in an elastic half-space, J. Geophys. Res.: Solid Earth, 121(2), 994–1006.

  49. Zhang, Z., H. Huang, W. Zhang, and X. Chen* (2016). On the Free‐Surface Problem in Dynamic‐Rupture Simulation of a Nonplanar Fault, Bull. Seismol. Soc. Am., 106(3), 1162–1175.

  50. Zhang, Z., J. Xu, and X. Chen* (2016). The supershear effect of topography on rupture dynamics, Geophys. Res. Lett., 43, 1457–1463.

  51. 朱耿尚,張振國, 張偉,   陳曉非* (2016). 2013 年 6 月 2 日臺(tái)灣南投地震強(qiáng)地面運(yùn)動(dòng)模擬. 地球物理學(xué)報(bào), 59(8), 2871–2877.

  52. Chaljub, E.*, E. Maufroy, P. Moczo, J. Kristek, F. Hollender, P.-Y. Bard, E. Priolo, P. Klin, F. d. Martin, Z. Zhang, W. Zhang, and X. Chen (2015). 3-D numerical simulations of earthquake ground motion in sedimentary basins: testing accuracy through stringent models, Geophys. J. Int., 201(1), 90–111.

  53. Li, H., W. Zhang*, Z. Zhang, and X. Chen (2015). Elastic wave finite-difference simulation using discontinuous curvilinear grid with non-uniform time step: two-dimensional case, Geophys. J. Int., 202(1), 102–118.

  54. 徐劍俠,張振國*, 戴文杰, 張偉, N. Akram, 文健,   陳曉非 (2015). 2015 年 4 月 25 日尼泊爾地震波場(chǎng)傳播及烈度初步模擬分析. 地球物理學(xué)報(bào), 58(5), 1812–1817.

  55. Hu, F., J. Xu, Z. Zhang, W. Zhang, and X. Chen* (2014). Construction of equivalent single planar fault model for strike-slip stepovers, Tectonophysics, 632, 244–249.

  56. Zhang, Z., W. Zhang*, and X. Chen (2014). Complex frequency-shifted multi-axial perfectly matched layer for elastic wave modelling on curvilinear grids, Geophys. J. Int., 198(1), 140–153.

  57. Zhang, Z., W. Zhang, and X. Chen* (2014). Three-dimensional curved grid finite-difference modelling for non-planar rupture dynamics, Geophys. J. Int., 199(2), 860–879.

  58. 張振國, 孫耀充, 徐建寬, 張偉, 陳曉非* (2014). 2014 年 8 月 3 日云南魯?shù)榈卣饛?qiáng)地面運(yùn)動(dòng)初步模擬及烈度預(yù)測(cè). 地球物理學(xué)報(bào), 57(9), 3038–3041.

  59. 張振國, 張偉, 孫耀充, 朱耿尚, 文健, 陳曉非* (2014). 2014 年 2 月 12 日新疆于田地震強(qiáng)地面運(yùn)動(dòng)初步模擬及烈度預(yù)測(cè). 地球物理學(xué)報(bào), 57(2), 685–689.

  60. Zhang, Z., W. Zhang, H. Li, and X. Chen* (2013). Stable discontinuous grid implementation for collocated-grid finite-difference seismic wave modelling, Geophys. J. Int., 192(3), 1179–1188.

  61. Zhu, G., Z. Zhang, J. Wen, W. Zhang, and X. Chen* (2013). Preliminary results of strong ground motion simulation for the Lushan earthquake of 20 April 2013, China. Earthq. Sci., 26(3-4), 191–197.

  62. Zhang, W., Z. Zhang, and X. Chen* (2012). Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids, Geophys. J. Int., 190(1), 358–378.

  63. Shen, W.-B.*, R. Sun, W. Chen, Z. Zhang, J. Li, J. Han, and H. Ding (2011). The expanding Earth at present: evidence from temporal gravity field and space-geodetic data, Ann. Geophys., 54(4), 436–453.