師資
個(gè)人簡(jiǎn)歷
本科:
數(shù)學(xué)系, 南京大學(xué), 2007年9月- 2011年7月.
博士研究生:
博士研究生 , 計(jì)算數(shù)學(xué) , 中國(guó)科學(xué)院數(shù)學(xué)與系統(tǒng)科學(xué)研究院 , 2011年9月 - 2014年9月 ,
博士導(dǎo)師: 陳志明, 研究員, 計(jì)算數(shù)學(xué)與科學(xué)工程計(jì)算研究所
博士:
計(jì)算數(shù)學(xué), 數(shù)學(xué)系, 巴黎高等師范學(xué)校, 2014年9月 - 2017年7月,
博士導(dǎo)師:Habib Ammari, 教授, 蘇黎世聯(lián)邦理工學(xué)院.
博士后:
數(shù)學(xué)系, 南方科技大學(xué), 2017年9月-2019年10月
訪問(wèn)助理教授:
數(shù)學(xué)系, 南方科技大學(xué), 2019 年11月-2022年5月
助理教授:
數(shù)學(xué)系, 南方科技大學(xué), 2022年6月至今
研究方向
反問(wèn)題
不確定性分析
經(jīng)驗(yàn)過(guò)程應(yīng)用
成像方法
均勻化理論
偏微分方程數(shù)值方法
教學(xué)
2017-2018 Teaching assistant for 'Finite element method'
2017-2018 Teaching assistant for 'Selected topics in partial differential equations’
2019 Teach tutorial classes of 'Linear algebra' including Chinese class and English class
2020 Teach classes of 'Linear algebra' and 'Ordinary differential equations A' (2020 年春季學(xué)期常微分方程A,2020年秋季學(xué)期線性代數(shù)I-A)
2021 Teach class of 'Ordinary differential equations A' (2021年春季學(xué)期常微分方程A)
2021 Teach classes of 'Linear algebra' and 'Ordinary differential equations B' (2021 年秋季學(xué)期常微分方程B,,2021年秋季學(xué)期線性代數(shù)I-A)
發(fā)表論著
[1] H. Ammari, G.S. Alberti, B. Jin, J.-K. Seo and W. Zhang, The Linearized inverse problem in multifrequency electrical impedance tomography, SIAM Journal on Imaging Sciences, 2016, 9:1525-1551.
[2] H. Ammari, T. Widlak and W. Zhang, Towards monitoring critical microscopic parameters for electropermeabilization, Quarterly of Applied Mathematics, 2017, 75: 1-17.
[3] H. Ammari, L. Qiu, F. Santosa and W. Zhang*, Determining anisotropic conductivity using Diffusion Tensor Magneto-acoustic Tomography with Magnetic Induction, Inverse Problems, 2017, 33: 125006.
[4] Z. Chen, R. Tuo and W. Zhang, Stochastic Convergence of A Nonconforming Finite Element Method for the Thin Plate Spline Smoother for Observational Data, SIAM Journal on Numerical Analysis, 2018, 56: 635-659.
[5] H. Ammari, B. Jin and W. Zhang*, Linearized Reconstruction for Diffuse Optical Spectroscopic Imaging, Proceedings of the Royal Society A, 2018, 475: 20180592.
[6] Z. Chen, R. Tuo and W. Zhang, A Balanced Oversampling Finite Element Method for Elliptic Problems with Observational Boundary Data, Journal of Computational Mathematics, 2020, 38, 355-374.
[7] M. V. Klibanov, J. Li and W. Zhang, Convexification of Electrical Impedance Tomography with Restricted Dirichlet-to-Neumann Map Data, Inverse problems, 2019, 35: 035005.
[8] M. V. Klibanov, J. Li and W. Zhang, Convexification for the Inversion of a Time Dependent Wave Front in a Heterogeneous Medium, SIAM Journal on Applied Mathematics, 2019, 79(5), 1722–1747.
[9] M. V. Klibanov, J. Li and W. Zhang*, Convexification for an inverse parabolic problem, Inverse problems, 2020, 36: 085008.
[10]V. Klibanov, J. Li and W. Zhang*, Linear Lavrent’ev Integral Equation for the NumericalSolution of a Nonlinear Coefficient Inverse Problem, SIAM Journal on Applied Mathematics, 2021, 81(5), 1954–1978.
[11] Z. Chen, W. Zhang, J. Zou, Stochastic convergence of regularized solutions and their finite element approximations to inverse source problems, SIAM Journal on Numerical Analysis, 2022, 60(2), 751-780.
[12] M. V. Klibanov, J. Li and W. Zhang*, A Globally Convergent Numerical Method for a 3D Coefficient Inverse Problem for a Wave-Like Equation, SIAM Journal on Scientific Computing, 44(5), A3341–A3365.