91精品 国产区|麻豆视频传媒短视频网|免费吃瓜在线观看|吃瓜一区播放|91制片厂进入脸秀|国产成人精品网东北老女人|麻豆传媒映画两岸三地|白浆h网站|五一爆料网官网|五月网站,91制片厂安然,吃瓜国产黑料在线,麻豆文化传媒官网入口i

師資

EN       返回上一級(jí)       師資搜索

研究領(lǐng)域

凝聚態(tài)物理理論,,分?jǐn)?shù)量子霍爾效應(yīng)系統(tǒng)

 

教育背景

2000.08-2006.12 博士(凝聚態(tài)物理) 美國(guó)明尼蘇達(dá)大學(xué)

1997.09-2000.07 碩士(凝聚態(tài)物理) 清華大學(xué)

1992.09-1997.07 學(xué)士(現(xiàn)代應(yīng)用物理)清華大學(xué)

 

工作經(jīng)歷

2013.02-2018.08 ??南方科技大學(xué)物理系,,助理教授

2011.08-2013.02?? 香港大學(xué)物理系,,博士后/研究助理教授

2009.08-2011.08?? 美國(guó)弗吉尼亞理工大學(xué)物理系,,博士后

2007.01-2009.08?? 美國(guó)加利福尼亞州立大學(xué)北嶺分校物理系,,博士后

 

論文及專(zhuān)利

1. Possible half-metallic phase in bilayer graphene: Calculations based on mean-field theory applied to a two-layer Hubbard model, Jie Yuan, Dong-Hui Xu, Hao Wang, Yi Zhou, Jin-Hua Gao, and Fu-Chun Zhang, Phys. Rev. B 88, 201109(R) (2013).
2. Layer antiferromagnetic ground state in bilayer graphene: a first-principle investigation, Yong

Wang, Hao Wang, Jin-hua Gao, and Fu-chun Zhang, Phys. Rev. B 87, 195413 (2013).

3. Flat band electrons and interactions in rhombohedral trilayer graphene, Hao Wang, Jin-Hua Gao, and Fu-Chun Zhang, Phys. Rev. B 87, 155116 (2013).
4. Fractional quantum Hall states in two-dimensional electron systems with anisotropic interactions, Hao Wang, Rajesh Narayanan, Xin Wan, and Funchun Zhang, Phys. Rev. B 86, 035122 (2012).
5. Models of strong interaction in flat-band graphene nanoribbons: magnetic quantum crystals, Hao Wang and V. W. Scarola, Phys. Rev. B 85, 075438 (2012).
6. Jastrow-correlated wavefunctions for flat-band lattices, Hao Wang and V. W. Scarola, Phys. Rev. B 83, 245109 (2011).
7. Identifying quantum topological phases through statistical correlation, Hao Wang, B. Bauer, M. Troyer, and V. W. Scarola, Phys. Rev. B 83, 115119 (2011).
8. Particle-hole symmetry breaking and 5/2 fractional quantum hall effect, Hao Wang, D. N. Sheng, and F. D. M. Haldane, Phys. Rev. B 80, 241311(R) (2009).
9. Broken-symmetry states of Dirac fermions in graphene with a partially filled high landau level, Hao Wang, D. N. Sheng, L. Sheng, and F. D. M. Haldane, Phys. Rev. Lett. 100, 116802 (2008).
10. Unconventional magnetic vortex structures observed in micromagnetic simulations, M. Yan, H. Wang, and C. E. Campbell, J. Magn. Magn. Mater. 320,?1937?(2008).
11.

 

Spin dynamics of a magnetic anitvortex: micromagnetic simulations, Hao Wang and C. E. Campbell, Phys. Rev. B 76, 220407(R) (2007).
12. Vorticity and antivorticity in submicron ferromagnetic films, Hao Wang, M. Yan and C. E. Campbell, Int. J. Mod. Phys. B 21, 2289 (2007).
13. Spin wave modes in thin-film ferromagnetic stripes, M. Yan, H. Wang, P. A. Crowell, C. E. Campbell, and C. Bayer, Condensed Matter Theories, vol. 20, Ed. J. W. Clark, R. M. Panoff, and H. Li, Nova Scientific, New York, 251-263 (2006).
14. Spin waves in an inhomogeneously magnetized stripe, C. Bayer, J. P. Park, H. Wang, M. Yan, C. E. Campbell, and P. A. Crowell, Phys. Rev. B 69, 134401 (2004).
15. Spin-resonant suppression and enhancement in ZnSe/Zn1-xMnxSe multiplayer heterostructures, Y. Guo, B.-L. Gu, H. Wang, and Y. Kawazoe, Phys. Rev. B 63, 214415 (2001).
16. Spin-polarized transport through a ZnSe/Zn1-xMnxSe heterostructure under an applied electric field, Y. Guo, H. Wang, B.-L. Gu, and Y. Kawazoe, J. Appl. Phys. 88, 6614 (2000).
17. Electric-field effects on electronic tunneling transport in magnetic barrier structures, Y. Guo, H. Wang, B.-L. Gu, and Y. Kawazoe, Phys. Rev. B 61, 1728 (2000).
18. Electron coherent tunneling in low-dimensional magnetic quantum structures, Yong Guo, Hao Wang, Bing-Lin Gu, and Yoshiyuki Kawazoe, Physica E 8, 146 (2000).
19. Wave-vector-dependent tunneling transmission characteristics in periodic and quasiperiodic semiconductor supperlattices, Guo Yong, Wang Hao, and Gu Bing-Lin, Tsinghua Science and Technology 5(2), (2000).
20. Transport of electrons in double-barrier magnetic structures under a constant electric field, Wang Hao, Guo Yong, and Gu Bing-Lin, Acta Physics Sinica 48(9), 1723 (1999).