師資
劉泉影博士,,2019年9月加入南方科技大學(xué),,生物醫(yī)學(xué)工程系助理教授,,博士生導(dǎo)師,神經(jīng)計(jì)算與控制實(shí)驗(yàn)室(NCC lab)負(fù)責(zé)人,。劉泉影博士畢業(yè)于瑞士蘇黎世聯(lián)邦理工(ETH Zurich)生物醫(yī)學(xué)工程方向,,在美國加州理工學(xué)院(Caltech)進(jìn)行計(jì)算與數(shù)學(xué)科學(xué)方向的博士后訓(xùn)練。
劉泉影博士專注于類腦智能,、多模態(tài)神經(jīng)信號處理算法、腦網(wǎng)絡(luò)動(dòng)力學(xué)建模,、神經(jīng)優(yōu)化控制,。提出了高通道腦電溯源算法,解決了腦電溯源精度不高,、位置不準(zhǔn),、靜息態(tài)腦網(wǎng)絡(luò)無法有效提取的問題;提出了數(shù)據(jù)驅(qū)動(dòng)的腦網(wǎng)絡(luò)動(dòng)力學(xué)建模方法,建立基于控制理論的神經(jīng)刺激優(yōu)化框架,,解決大腦控制不準(zhǔn),、控制不住的問題。
近5年,,劉泉影在腦科學(xué),、人工智能、控制的交叉領(lǐng)域以一作或通訊作者身份發(fā)表SCI/EI學(xué)術(shù)論文40余篇,,包括The Innovation, Neuroimage, Pattern Recognition, IEEE會刊等國際權(quán)威期刊,,及NeurIPS, IJCAI, ACC等機(jī)器學(xué)習(xí)和控制頂會;譯著《認(rèn)知和行為的計(jì)算建?!?;Google Scholar顯示總引用2000余次,H因子23,。申請專利12項(xiàng),;擔(dān)任IEEE期刊IEEE J TRANSL ENG HE副主編、中國神經(jīng)科學(xué)學(xué)會計(jì)算神經(jīng)科學(xué)專委會委員,、中國神經(jīng)科學(xué)學(xué)會神經(jīng)調(diào)控分會理事,、中國人工智能學(xué)會腦機(jī)融合與生物機(jī)器智能專委會委員、中國生物醫(yī)學(xué)工程學(xué)會醫(yī)學(xué)人工智能專委會青年委員,、深圳市電子學(xué)會新一代人工智能專委會秘書,;講授《機(jī)器學(xué)習(xí)與醫(yī)學(xué)工程應(yīng)用》、《人腦智能與機(jī)器智能》等課程,。
NCC lab研究集中在機(jī)器學(xué)習(xí)算法,、多模態(tài)神經(jīng)信號處理、神經(jīng)計(jì)算建模,、神經(jīng)調(diào)控,、醫(yī)學(xué)人工智能。結(jié)合動(dòng)力學(xué)系統(tǒng)模型和深度學(xué)習(xí)模型研究神經(jīng)信號表征,,以探索大腦的計(jì)算機(jī)制,,用于解釋神經(jīng)信號、大腦功能和人類行為三者之間的關(guān)系,。
NCC lab長期招收碩士生,、博士生、博士后,、研究助理(RA),、訪問學(xué)者、訪問本科生,。博士申請者要求先來NCC lab訪問或做RA,,通過考核,,方可錄用。
(請感興趣的申請者把CV和personal statement發(fā)郵件給劉泉影老師)
研究方向
1)機(jī)器學(xué)習(xí)算法(深度生成模型,、流形學(xué)習(xí),、圖模型)
2)神經(jīng)計(jì)算建模(神經(jīng)表征、腦網(wǎng)絡(luò)動(dòng)力學(xué))
3)多模態(tài)神經(jīng)數(shù)據(jù)融合算法(DTI,、fMRI,、EEG、SEEG)
4)網(wǎng)絡(luò)控制理論(Network control theory)
5)神經(jīng)反饋控制(TMS,、tDCS/tACS,,Neurofeedback)
6)雙向腦機(jī)接口(腦到機(jī)、機(jī)到腦)
教育經(jīng)歷
2013-2017 博士,,瑞士蘇黎世聯(lián)邦理工學(xué)院,,健康科學(xué)與技術(shù)學(xué)院。導(dǎo)師:Nicole Wenderoth, Dante Mantini
2010-2013 碩士,,中國蘭州大學(xué),,信息科學(xué)與工程學(xué)院,計(jì)算機(jī)軟件與理論,。導(dǎo)師:胡斌教授
2006-2010 本科,,中國蘭州大學(xué),信息科學(xué)與工程學(xué)院,,電子信息科學(xué)與技術(shù),。
研究經(jīng)歷
2019.08 - 助理教授 (博導(dǎo)),南方科技大學(xué),,神經(jīng)計(jì)算與控制實(shí)驗(yàn)室PI
2017-2019 博士后,,美國加州理工學(xué)院,計(jì)算與數(shù)學(xué)科學(xué)學(xué)院 ,。導(dǎo)師: Dr. John Doyle
2017-2019 研究員,,美國亨廷頓醫(yī)學(xué)研究中心
2016-2017 訪問學(xué)者,比利時(shí)魯汶大學(xué),,運(yùn)動(dòng)控制與神經(jīng)可塑性實(shí)驗(yàn)室
2014-2015 訪問學(xué)者,,英國牛津大學(xué),實(shí)驗(yàn)心理學(xué)院
研究項(xiàng)目
2021.01-2023.12 國家自然科學(xué)基金青年科學(xué)基金項(xiàng)目 (主持)
2022.01-2025.12 科技部國家重點(diǎn)研發(fā)計(jì)劃生物與信息融合專項(xiàng)項(xiàng)目(骨干)
2021.01-2022.12 深圳市科創(chuàng)委穩(wěn)定支持計(jì)劃面上項(xiàng)目 (主持)
2021.07-2023.06 深港澳科技計(jì)劃(C類)項(xiàng)目 (主要參與人)
2021.01-2022.12 深圳市科創(chuàng)委可持續(xù)發(fā)展科技專項(xiàng)項(xiàng)目 (主要參與人)
2021.09-2022.09 教育部“港澳與內(nèi)地大中小師生交流計(jì)劃大學(xué)生項(xiàng)目” (主持)
2020.01-2022.12 廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究基金項(xiàng)目 (主持)
2020.01-2020.12 廣東省研究生學(xué)術(shù)論壇基金 (主持)
2018-2021 比利時(shí)FWO Fellowship (主持,,3 years,,因回國而放棄)
2017-2019 美國Boswell Postdoctoral Fellowship (主持,完成)
2015-2017 瑞士Swiss National Science Foundation for Doc.Mobility grant (主持,,完成)
2014-2015 瑞士Swiss National Science Foundation for Mobility grant (主持,,完成)
獲獎(jiǎng)
深圳市孔雀人才計(jì)劃C類;
AAIC travel award (2019),;
Estes Stars Award (2018)
研究方向及代表性論文
方向1,、機(jī)器學(xué)習(xí)算法(Machine learning algorithms):基于深度學(xué)習(xí)、生成模型,、流形學(xué)習(xí)等方法,,研究人腦智能與人工智能的關(guān)系
1) X Ran*, M Xu, L Mei, Q Xu, Liu Q*. (2021), Detecting Out-of-distribution Samples via Variational Auto-encoder with Reliable Uncertainty Estimation, Neural Networks
2) X Ran, M Xu, Q Xu, H Zhou, Liu A*, Liu Q*. (2020), Bigeminal Priors Variational auto-encoder, arXiv:2010.01819
3) Yin W, Ma Z, Liu Q*. (2021), Riemannian Manifold Optimization for Discriminant Subspace Learning, arXiv:2101.08032
4) Yin W, Ma Z, Liu Q*. (2021), HyperNTF: A Hypergraph Regularized Nonnegative Tensor Factorization for Dimensionality Reduction, arXiv:2101.06827
方向2、深度學(xué)習(xí)在神經(jīng)科學(xué)與神經(jīng)信號處理中的應(yīng)用(Deep learning for Neuroscience):將深度學(xué)習(xí)應(yīng)用于腦電去噪,、腦源定位,、腦網(wǎng)絡(luò)辨識、腦疾病診斷等等
5) Zhang H#, Zhao M#, Li Z, Mantini D, Wei C, Liu Q*. (2021), EEGdenoiseNet: A benchmark dataset for deep learning solutions of EEG denoising, Journal of Neural Engineering
6) H Zhang, C Wei, M Zhao, H Wu, Q Liu*. (2021). A novel convolutional neural network model to remove muscle artifacts from EEG, 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
7) C Wei, K Lou, Z Wang, M Zhao, D Mantini, Q Liu*. (2021). Edge Sparse Basis Network: A Deep Learning Framework for EEG Source Localization, IJCNN.
8) Liu Q, Wu H, Liu A (2019). Modeling and Interpreting Real-world Human Risk Decision Making with Inverse Reinforcement Learning, Real-world Sequential Decision Making workshop at the 36th International Conference on Machine Learning (ICML).
9) J Yuan, X Ran, K Liu, C Yao, Y Yao, H Wu, Q Liu*. (2021). Machine Learning Applications on Neuroimaging for Diagnosis and Prognosis of Epilepsy: A Review, arXiv:2102.03336
方向3,、控制理論用于腦網(wǎng)絡(luò)控制(Control theory for Brain network control):利用優(yōu)化控制理論,、網(wǎng)絡(luò)控制理論,反向工程神經(jīng)的控制原理,,提出新的神經(jīng)反饋優(yōu)化控制算法
10) Nakahira Y, Liu Q, Sejnowski T, Doyle J.C. (2021), Diversity-enabled sweet spots in layered architectures and speed-accuracy trade-offs in sensorimotor control, PNAS
11) Z Liang, Z Luo, K Liu, J Qiu, Q Liu*, (2021). Deep Koopman-operator based model predictive control for closed-loop electrical neurostimulation in epilepsy, arXiv:2103.14321
12) Nakahira Y#, Liu Q#, Sejnowski T, Doyle J.C. (2019), Fitts' Law for speed-accuracy trade-off describes a diversity-enabled sweet spot in sensorimotor control, https://arxiv.org/pdf/1906.00905.pdf (# co-first author)
13) Liu Q, C Kurniawan, C Xu, S Jagtap, X Deng, K Lou, YS Soh, Y Nakahira (2021). Axon Arbor Trade-off Between Wiring Cost, Delay, and Synchronization in Neuronal Networks, 2021 55th Annual Conference on Information Sciences and Systems (CISS).
14) Liu Q, Nakahira Y, Mohideen A, Dai A, Choi S, Pan A, Ho D, and Doyle J (2019). Experimental and educational platforms for studying architecture and tradeoffs in human sensorimotor control, American Control Conference (ACC).
15) Liu Q, Yorie Nakahira, Zhichao Liang, Ahkeel Mohideen, Adam Dai, Sung Hoon Choi, Angelina Pan, Dimitar M. Ho, John C. Doyle, (2020). WheelCon: A Wheel Control-Based Gaming Platform for Studying Human Sensorimotor Control, Journal of Visualized Experiments (JoVE)
方向4,、多模態(tài)腦影像處理、腦網(wǎng)絡(luò)建模(Multimodal Brain imaging; Brain network modelling):利用EEG,、SEEG,、fMRI、DTI等多模態(tài)神經(jīng)信號,,提出多模態(tài)神經(jīng)信號處理新算法,,構(gòu)建腦網(wǎng)絡(luò)模型,挖掘信息在不同腦區(qū)之間流動(dòng)的關(guān)系
16) S Zheng, Z Liang, Y Qu, Q Wu, H Wu, & Q Liu *. (2021). Kuramoto model based analysis reveals oxytocin effects on brain network dynamics. International Journal of Neural System.
17) Wu H, Feng C, Lu X, Liu X, Liu Q*, (2020). Oxytocin effects on the resting-state mentalizing brain network, Brain Imaging and Behavior
18) Samogin J#, Liu Q#, Marino M, Wenderoth N, Mantini D. (2019), Shared and connection-specific intrinsic interactions in the default mode network, NeuroImage (2019) 474–481 (# equal contribution)
19) Marino M#, Liu Q#, Samogin J, Tecchio F, Mantini D, Porcaro C (2019). Neuronal dynamics enable the functional differentiation of resting state networks in the human brain, Human Brain Mapping, 40(5):1445-1457. (# equal contribution)
20) Liu Q, Ganzetti M, Wenderoth N, Mantini D, (2018). Detecting large-scale brain networks using EEG: impact of electrode density, head modelling and source localization, Frontiers in Neuroinformatics 12 (4)
21) Liu Q, Farahibozorg S, Porcaro C, Wenderoth N and Mantini D (2017). Detecting large-scale networks in the human brain using high-density electroencephalography. Human Brain Mapping. 38 (9), 4631-4643
22) Liu Q, Balsters JH, Baechinger M, van der Groen O, Wenderoth N and Mantini D (2015). Estimating a neutral reference for electroencephalographic recordings: the importance of using a high-density montage and a realistic head model. Journal of Neural Engineering 12(5): 056012.