91精品 国产区|麻豆视频传媒短视频网|免费吃瓜在线观看|吃瓜一区播放|91制片厂进入脸秀|国产成人精品网东北老女人|麻豆传媒映画两岸三地|白浆h网站|五一爆料网官网|五月网站,91制片厂安然,吃瓜国产黑料在线,麻豆文化传媒官网入口i

師資

EN       返回上一級(jí)       師資搜索

年博士畢業(yè)于加拿大多倫多大學(xué)巖石力學(xué)專業(yè),,年至年在美國(guó)國(guó)家實(shí)驗(yàn)室固體地球物理方向從事博士后研究,,年月加入南方科技大學(xué)地球與空間科學(xué)系,,入選國(guó)家海外高層次人才計(jì)劃青年項(xiàng)目,。主要研究領(lǐng)域?yàn)閹r石力學(xué)和斷層力學(xué),具體包括基于Combined finite-discrete element method, FDEM基于FDEM的熱-流-固(THM)多物理場(chǎng)作用下巖石復(fù)雜破裂機(jī)理研究及水力壓裂,、基于張量的巖石應(yīng)力變異性()和異質(zhì)性()統(tǒng)計(jì)方法與巖石應(yīng)力場(chǎng)模擬反演研究,、模擬與試驗(yàn)、基于機(jī)器學(xué)習(xí)的實(shí)驗(yàn)室地震預(yù)測(cè)與斷層摩擦機(jī)理研究Physical Review Letters(編輯推薦文章)Geophysical Research LettersJournal of Geophysical Research: Solid EarthInternational Journal of Rock Mechanics and Mining ScienceRock Mechanics and Rock Engineering30余<span microsoft="" yahei";"="" yahei";="" line-height:="" 2;"="" line-height:2;"="" style="text-wrap: wrap; line-height: 2; font-family: Arial;">篇,,主持國(guó)家自然科學(xué)基金面上項(xiàng)目,、科技部重點(diǎn)研發(fā)專題,、廣東省面上、深圳市面上等多個(gè)科研項(xiàng)目,。

 

教育與工作經(jīng)歷

2021 – 至今,,副教授,南方科技大學(xué),,地球與空間科學(xué)系

2019 – 2020,助理教授,,南方科技大學(xué),,地球與空間科學(xué)系

2017 – 2019,博士后,,美國(guó)Los Alamos國(guó)家實(shí)驗(yàn)室,,固體地球物理

2012 – 2017,博士,,加拿大多倫多大學(xué),,巖石力學(xué)與巖石工程


榮譽(yù)獎(jiǎng)項(xiàng)

2021年,深圳市“孔雀計(jì)劃”B類人才

2020年,,國(guó)家海外高層次人才計(jì)劃(青年)

2016年,,第七屆國(guó)際地應(yīng)力會(huì)議最佳論文獎(jiǎng)

 

學(xué)術(shù)兼職

美國(guó)巖石力學(xué)協(xié)會(huì)(American Rock Mechanics Association)

美國(guó)地球物理協(xié)會(huì)(American Geophysics Union)

國(guó)際巖石力學(xué)協(xié)會(huì)(International Society for Rock Mechanics)

美國(guó)地震協(xié)會(huì)(Society of American Seismology)

加拿大巖土工程協(xié)會(huì)(Canadian Geotechnical Society)

美國(guó)土木工程師協(xié)會(huì)(American Society of Civil Engineer)

 

研究領(lǐng)域

巖石力學(xué):

  1. 基于有限元和離散元耦合方法(Combined finite-discrete element method, FDEM)的巖石多物理場(chǎng)、多尺度耦合,、并行算法開(kāi)發(fā)

  2. 基于FDEM的熱-流-固(THM)多物理場(chǎng)作用下巖石復(fù)雜破裂機(jī)理,、水力壓裂研究

  3. 基于張量的巖石應(yīng)力變異性和異質(zhì)性統(tǒng)計(jì)方法與巖石應(yīng)力場(chǎng)模擬反演

斷層力學(xué):

  1. 實(shí)驗(yàn)室尺度的斷層剪切黏滑試驗(yàn)和數(shù)值模擬

  2. 基于機(jī)器學(xué)習(xí)的實(shí)驗(yàn)室地震預(yù)測(cè)與斷層摩擦機(jī)理研究

 

常年招聘博士后、博士生,、碩士研究生及訪問(wèn)學(xué)生,,歡迎具有固體地球物理學(xué)、巖石力學(xué),、地質(zhì)工程,、巖土工程、計(jì)算力學(xué),、物理學(xué),、統(tǒng)計(jì)學(xué)等(但不限于)相關(guān)背景的同學(xué)來(lái)信咨詢或建立合作。


期刊論文 (*通訊作者, 課題組成員)

37. Cai, W., Gao, K.*, Ai, S., & Zhi, S. (2023). A 2D energy-conserving contact model for the combined finite-discrete element method (FDEM). Computers and Geotechnics, 166, 105972. doi:10.1016/j.compgeo.2023.105972. [PDF]

36. Feng, Y., Gao, K.*, & Lacasse, S. (2023). Bayesian partial pooling to reduce uncertainty in overcoring rock stress estimation. Journal of Rock Mechanics and Geotechnical Engineering. doi:10.1016/j.jrmge.2023.05.003. [PDF]

35. Cai, W., Gao, K.*, Ai, S., Wang, M., & Feng, Y. T. (2023). Implementation of extrinsic cohesive zone model (ECZM) in 2D finite-discrete element method (FDEM) using node binding scheme. Computers and Geotechnics, 159, 105470. doi:10.1016/j.compgeo.2023.105470. [PDF]

34. Ai, S.-G., & Gao, K.* (2023). Elastoplastic Damage Modeling of Rock Spalling/Failure Induced by a Filled Flaw Using the Material Point Method (MPM). Rock Mechanics and Rock Engineering. doi:10.1007/s00603-023-03265-8. [PDF]

33. Zhang, Y., Gao, K.*, & Li, C. (2023). Two slip regimes in sheared granular fault. Earth and Planetary Science Letters, 608, 118086. doi:10.1016/j.epsl.2023.118086. [PDF]

32. Cai, W., Gao, K.*, Wu, S., & Long, W. (2023). Moment Tensor-Based Approach for Acoustic Emission Simulation in Brittle Rocks Using Combined Finite-Discrete Element Method (FDEM). Rock Mechanics and Rock Engineering. doi:10.1007/s00603-023-03261-y. [PDF]

31. Mei, J., Ma, G., Tang, L., Gao, K., Cao, W., & Zhou, W. (2023). Spatial clustering of microscopic dynamics governs the slip avalanche of sheared granular materials. International Journal of Plasticity. doi:10.1016/j.ijplas.2023.103570. [PDF]

30. Feng, Y.*, Mignan, A., Sornette, D., & Gao, K. (2022). Investigating Injection Pressure as a Predictor to Enhance Real‐Time Forecasting of Fluid‐Induced Seismicity: A Bayesian Model Comparison. Seismological Research Letters. doi:10.1785/0220220309.

29. Li, X., Gao, K.*, Feng, Y., & Zhang, C. (2022). 3D geomechanical modeling of the Xianshuihe fault zone, SE Tibetan Plateau: Implications for seismic hazard assessment. Tectonophysics, 839, 229546. doi:10.1016/j.tecto.2022.229546. [PDF]

28. Cao, H., Apatay, E., Crane, G., Wu, B., Gao, K., & Askari, R. (2022). Evaluation of various data acquisition scenarios for the retrieval of seismic body waves from ambient noise seismic interferometry technique via numerical modeling. Geosciences, 12(7), 270. doi:10.3390/geosciences12070270. [PDF]

27. Wu, S., Gao, K.*, Wang, X., Ge, H., Zou, Y., & Zhang, X. (2022). Investigating the Propagation of Multiple Hydraulic Fractures in Shale Oil Rocks Using Acoustic Emission. Rock Mechanics and Rock Engineering. doi:10.1007/s00603-022-02960-2. [PDF]

26. Yang, L., Wu, S., Gao, K., & Shen, L.* (2022). Simultaneous propagation of hydraulic fractures from multiple perforation clusters in layered tight reservoirs: Non-planar three-dimensional modelling. Energy, 254, 124483. doi:10.1016/j.energy.2022.124483. [PDF]

25. Wu, S., Gao, K.*, Feng, Y.*, & Huang, X. (2022). Influence of slip and permeability of bedding interface on hydraulic fracturing: A numerical study using combined finite-discrete element method. Computers and Geotechnics, 148, 104801. doi:10.1016/j.compgeo.2022.104801. [PDF]

24. Wu, S., Ge, H.*, Li, T., Wang, X., Li, N., Zou, Y., & Gao, K.* (2022). Characteristics of fractures stimulated by supercritical carbon dioxide fracturing in shale based on acoustic emission monitoring. International Journal of Rock Mechanics and Mining Sciences, 152, 105065. doi:10.1016/j.ijrmms.2022.105065. [PDF]

23. Ma, G., Mei, J.*, Gao, K., Zhao, J., Zhou, W. & Wang, D. (2022). Machine learning bridges microslips and slip avalanches of sheared granular gouges. Earth and Planetary Science Letters, 579, 117366. doi:10.1016/j.epsl.2022.117366. [PDF]

22. Cai, W., Li, Y.*, Gao, K.*, & Wang, K. (2021). Crack propagation mechanism in rock-like specimens containing intermittent flaws under shear loading. Theoretical and Applied Fracture Mechanics, 117, 103187. doi:10.1016/j.tafmec.2021.103187. [PDF]

21. Wu, M., Gao, K.*, Liu, J., Song, Z., & Huang, X.* (2021). Influence of rock heterogeneity on hydraulic fracturing: A parametric study using the combined finite-discrete element method. International Journal of Solids and Structures, 234-235, 111293. doi:10.1016/j.ijsolstr.2021.111293. [PDF]

20. Feng, Y., Gao, K.*, Mignan, A., & Li, J. (2021). Improving local mean stress estimation using Bayesian hierarchical modelling. International Journal of Rock Mechanics and Mining Sciences, 148, 104924. doi:10.1016/j.ijrmms.2021.104924. [PDF]

19. Wang, M., Gao, K., & Feng, Y.T.* (2021). An improved continuum-based finite–discrete element method with intra-element fracturing algorithm. Computer Methods in Applied Mechanics and Engineering, 384, 113978. doi:10.1016/j.cma.2021.113978. [PDF]

18. Ma, G.*, Zou, Y., Gao, K., Zhao, J., & Zhou, W. (2020). Size polydispersity tunes slip avalanches of granular gouge. Geophysical Research Letters, 47(23). doi:10.1029/2020GL090458. [PDF]

17. Gao, K.*, Guyer, R. A., Rougier, E., & Johnson, P. A. (2020). Plate motion in sheared granular fault system. Earth and Planetary Science Letters, 548, 116481. doi:10.1016/j.epsl.2020.116481. [PDF]

16. Knight, E. E.*, Rougier, E., Lei, Z., Euser, B., Chau, V., Boyce, S. H., Gao, K., Okubo, K., & Froment, M. (2020). HOSS: an implementation of the combined finite-discrete element method. Computational Particle Mechanics. doi:10.1007/s40571-020-00349-y. [PDF]

15. Chau, V.*, Rougier, E., Lei, Z., Knight, E.E., Gao, K., Hunter, A., Srinivasan, G., & Viswanathan, H. (2019). Numerical analysis of flyer plate experiments in granite via the combined finite–discrete element method. Computational Particle Mechanics. doi:10.1007/s40571-019-00300-w. [PDF]

14. Gao, K., Lei, Q.*, Bozorgzadeh, N, & Chau, V. T. (2019). Can we estimate far-field stress using the mean of local stresses? An examination based on numerical simulations. Computers and Geotechnics, 116, 103188. doi:10.1016/j.compgeo.2019.103188. [PDF]

13. Gao, K.*, Guyer, R. A., Rougier, E., Ren, C. X., & Johnson, P. A. (2019). From stress chains to acoustic emission. Physical Review Letters, 123(4), 048003. doi:10.1103/PhysRevLett.123.048003. [PDF]

12. Gao, K.*, Rougier, E., Guyer, R. A., Lei, Z, & Johnson, P. A. (2019). Simulation of crack induced nonlinear elasticity using the combined finite-discrete element method. Ultrasonics, 98, 51-61. doi:10.1016/j.ultras.2019.06.003. [PDF]

11. Gao, K.*, Bozorgzadeh, N., & Harrison, J. P. (2019). The equivalence of three shear?normal stress forms of the Hoek?Brown criterion. Rock Mechanics and Rock Engineering, 52, 3501-3507. doi:10.1007/s00603-019-01758-z. [PDF]

10. Lei, Q., & Gao, K.* (2019). A numerical study of stress variability in heterogeneous fractured rocks. International Journal of Rock Mechanics and Mining Sciences, 113, 121-133. doi:10.1016/j.ijrmms.2018.12.001. [PDF]

9.   Gao, K.*, & Harrison, J. P. (2019). Examination of mean stress calculation approaches in rock mechanics. Rock Mechanics and Rock Engineering. 52(1),83–95. doi:10.1007/s00603-018-1568-0. [PDF]

8.   Gao, K.*, Euser, B. J., Rougier, E., Guyer, R. A., Lei, Z., Knight, E. E., Carmeliet, J., & Johnson, P. A. (2018). Modeling of stick-slip behavior in sheared granular fault gouge using the combined finite?discrete element method. Journal of Geophysical Research: Solid Earth, 123,5774–5792. doi:10.1029/2018JB015668. [PDF]

7.   Gao, K.*, & Harrison, J. P. (2018). Re-examination of the in situ stress measurements on the 240 level of the AECL’s URL using tensor-based approaches. Rock Mechanics and Rock Engineering. 51(10), 3179–3188. doi:10.1007/s00603-018-1530-1. [PDF]

6.   Lei, Q.*, & Gao, K.* (2018). Correlation between fracture network properties and stress variability in geological media. Geophysical Research Letters, 45, 3994–4006. doi:10.1002/2018GL077548. [PDF]

5.   Gao, K., & Lei, Q.* (2018). Influence of boundary constraints on stress heterogeneity modelling. Computers and Geotechnics, 99, 130-136. doi:10.1016/j.compgeo.2018.03.003. [PDF]

4.   Gao, K.*, & Harrison, J. P. (2018). Scalar-valued measures of stress dispersion. International Journal of Rock Mechanics and Mining Sciences, 106, 234–242. doi:10.1016/j.ijrmms.2018.04.008. [PDF]

3.   Gao, K.*, & Harrison, J. P. (2018). Multivariate distribution model for stress variability characterisation. International Journal of Rock Mechanics and Mining Sciences, 102, 144-154. doi:10.1016/j.ijrmms.2018.01.004. [PDF]

2.   Gao, K.*, & Harrison, J. P. (2017). Generation of random stress tensors. International Journal of Rock Mechanics and Mining Sciences, 94, 18-26. doi:10.1016/j.ijrmms.2016.12.011. [PDF]

1.   Gao, K.*, & Harrison, J. P. (2016). Mean and dispersion of stress tensors using Euclidean and Riemannian approaches. International Journal of Rock Mechanics and Mining Sciences, 85, 165-173. doi:10.1016/j.ijrmms.2016.03.019. [PDF]